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Abstract. A perceptron whose space of interactions can interpolate between spherically 
constrained and binary-valued synapses is introduced and investigated as an associative neural- 
network memory. For maximally stable storage. and where the weight-space remains connected, 
the critical storage capacity. ac. is found to be reduced by a factor determined solely by 
the geomevy of the weight space. and is shown to interpolate. within the replica-symmetric 
approximation, between a. = 2 (in the Gardner-model limit) and a, = 4/n.  Various 
comparisons of the synaptic weights with those of the binary perceptron show that such 
differences as remain between this weight space and that of the true binary perceptron we 
crucial la obtaining % > 4/n. Although these differences limit the use of such models in 
realizing optimal binary networks. they may yet provide worthwhile binary systems by simple 
weight clipping. Simulation results are presented in suppon of the theoretical analyses. 

1. Introduction 

The paradigm of neural networks, the perceptron (Minsky and Papert 1969) can exist in 
a great many varieties but has perhaps two extreme and contrasting forms, which have 
been the focus of a great deal of investigation. At one extreme, properties of, and training 
algorithms for, perceptrons whose controlling variables (predominantly the synaptic weights 
(41) can each take essentially any real value, are quite well documented (e.g. Gardner 
1988, Anlauf and Biehl 1989). In contrast, systems whose synapses are constrained to be 
discrete variables, themselves also the subject of much study, show greater pathological 
behaviour than the former, most dramatically in the complexity of their training procedure 
(e.g. Gutfreund and Stein 1990, Ptrez Vicente et a[ 1992). A method of interpolating 
between these two poles is therefore likely to be instructive in better defining the challenges 
of the binary perceptron problem. In this paper we suggest a simple model that takes a 
small step in this direction. 

The perceptron problem may be defined as follows: given a set of U N  input patterns 
('questions'), (c;], with associated outputs ('answers'), [rp E (7klJ], the goal of training 
is to find a choice of synapses (J;) and a threshold @ which satisfy 

In the present context we will assume. for simplicity, the questions and answers to be 
independent, unbiased stochastic variables, such that @ = 0 may be assumed, and take 
(e;2)s = 1 ((cr)f = 0). The system size N will be taken as large, with a and finite 
cumulant averages of ( J ,  J and (e; 1 all as being of order N o  as N + CO. The indeterminacy 
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of the answers to input questions means that solutions to the problem can only exist for 
limited loading, (I, and thus a critical storage capacity may be defined. This also means 
that such a perceptron more closely resembles a heteroassociative memoIy than a cybemetic 
network. 

Given that ( l . l ) ,  with @ = 0, is in<ariant under the scaling Ji + AJi V i ,  the perceptron 
vector, J = ( . I l , .  . . J N )  may be nomalized without affecting the tractability of (1.1). This 
produces a spherical weight space if no additional a priori constraints on J are present. 
A much more restrictive selection of, J is implied by the binary choice Ji E [ k l ]  Vi, 
although both these schemes are capable of some success with the goal of (1.1) (Gardner 
1988, Krauth and Mkzard 1989). However, in common with the general intractability of 
integer-programming tasks relative to unconstrained optimization, those algorithms proposed 
for training the binary perceptron (e.g. Krauth and Opper 1989, Amaldi and Nicolis 1989, 
Kohler 1990) are generany both morFcomplicated and less successful than those known 
for the spherical system (e.g. Minsky and Papert 1969. Krauth and Mkzard 1987, Anlauf 
and Biehl 1989). The disconnectedness of the binary model's hypercubic weight space is 
at the root of this difficulty given that optimal solutions to (1.1) do not lie in a a single 
region of the weight space and that iterative local enhancement of an approximation to the 
perceptron vector is more difficult to effect than in a continuous weight space. 

Consider therefore a perceptron whose space of couplings is defined by 
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(1.2) 

so that J lies on the surface of a sphere, but with each Ji being locally constrained by 
a bound B ,  such as to always permit binary-valued J .  Clearly as B -+ 00 (and strictly, 
for B > fi). WN approaches an &&e spherical surface butas B + 1": WN contains 
disconnected regions centred on J = :(jzl, rtl, . . .). In this paper we will examine such 
networks in storing pattems according to the maximum stability rule, for which the aligning 
fields, 11' = N-4 E, rf'Jitp, of all pattems must exceed a positive threshold K .  (This 
represents a slightly more demanding requirement than the original task, but one that 
facilitates the correct response to deiraded input pattems.) It will be advantageous to 
define a set of candidate solution vectors by 

sa that S C n W represents those networks which successfully learn the responses to 
the input questions. In the following sections, we study the critical storage capacity LYJK) 

beyond which no solutions to (1.1) exist on average, as a function of B and seek insight into 
the distribution of J within S with a view to characterizing the approach of this perceptron 
to the binary model. 

2. Investigation of the weight space 

One may identify a number of general properties of the present perceptron problem for 
general N. Firstly, as is well known, the candidate solution space C, is convex and 
connected, being the intersection of convex and connected regions defined by the planes 
qP.7 .E" = ~ / f i  t. Regarding W itself, clearly the points J = [ * I ,  jz l , .  . .) always lie 

t The scalar product of IWO N-vectors a and b is defined as jb r, ajbi. 
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within W if W # 0 -+ E 2 I. W will be connected if there exist paths connecting these 
vertices. A geodesic linking two points a and b in a spherical space may be defined by 

where the position vectors are relative to the origin of the sphere in i ts  embedding Euclidian 
space. This geodesic represents the shortest arc linking a and b, and is such that y = f l  
represent the end-points and y = 0 is mid-way between a and b. Considering two 
representative adjacent comers, such as (+I.  +1, + I , .  . .) and (-I, + 1 ,  + I , .  . .), it may 
be seen that the magnitudes of the synaptic weights along the geodesic are given by the 
two coefficients in (2.1). By seeking the maximum values of these coefficients along this 
path, one may see that no synapse will violate the confinement constraint I Ji I r: E if 

1 - < 8’. 1 - w  1 

This immediately shows that WN will be disconnected in N = 2 if E c a, as is 
geometrically clear, but that as N + CO. W,, is disconnected only if ( E  - 1) = O ( N - ’ ) .  
Hence, comparing WN with figure 1, the ‘edges’ linking the comer regions of weight space 
will always be accessible if ( E  - 1) = O(No) as N -+ M. Figure 1 also makes it apparent 
that the solution space of the perceptron problem for J E W need not be connected for 
arbitrary positive K .  

Figure 1. A representation of Ihe weigh1 space WN for N = 3. 
as an aid U) visualization. 

For large dimensionality N, one may calculate straightforwardly the fractional volume 
of the sphere Ci J? = N that lies within WN. Denoting this ratio by F ,  one finds that 
this quantity is always exponentially small, i.e. - In  F = O ( N ) ,  indicating that the bounds 
141 4 B sharply reduce the accessible weight-space volume. Confining attention to the 
asymptotics of this fraction -N-’InF - exp(-fB’)/E as E + CO, while for 
E + 1 we have -N-l  In F - -In@ - 1). Therefore it would appear that the approach 
towards the Gardner limit ( B  -+ CO) is much swifter than that towards the binary model 
( N ( E  - 1) + 0). 

In the interests of conciseness, and in view of the frame-like nature of W N ,  the 
perceptron whose synaptic-weights lie within WN will be referred to as ‘skeletal’. 
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3. The saturation condition 

In a context where typical properties of perceptrons are desired and therefore, where the 
patterns E' are stochastic variables, the'bound ac beyond which solutions to (1.1) do not exist 
naturally cannot be defined other than statistically and this inevitably makes its definition 
more flexible and less intui:ire. In addition, such conditions as are typically applied to the 
spherical model and to the binary model appear to be starkly dissimilar. Given that our goal 
is to interpolate between these extremes, i t  is germane lo attempt to reinterpret the original 
analyses of these two models in a way that facilitates their generalization to the present 
problem. 

Two aspects of the solution set S are particularly indicative. Firstly, there is an 
appropriate measure of its size ([SI); if this is sufficiently large on average, then one 
would assert that CY <  CY^. Secondly, one might consider the breadth of dispersal of 
solutions; as solutions become scarcer, one would expect these to become increasingly 
localized. In Gardner's pioneering work on the spherical model (1987, 1988), it is the 
second form of indicator that was used to determine ac. whilst the former test is more 
relevant to Krauth and Mkzard's study (1989) of the binary perceptron. However, in the 
context of the binary model, although the resulting zero-entropy condition is quite intuitive, 
it is definitely inequivalent to the condition used by Gardner (technically, q --f l), a result 
that can be attributed to the disconnectedness of the solution space of the binary problem. 
It therefore seems more helpful to recast the localization condition into one of vanishing 
solution volume, given that these two conditions are equivalent in the case of Gardner's 
work. Nevertheless, there remains an ,additional complication. For the binary model, the 
weight space consists of discrete points, whilst that of the spherical model is continuous, 
and therefore the volume measures appropriate io these two spaces must be different and so 
are not inunediately comparable. Again, in hoping to mediate 'ktweeo these two extremes, 
some reconciliation must be achieved. 

Consider, therefore, the fractional volume V of weight space that lies within the solution 
space. In general, W will consist of n, disjoint connected domains; W = u,W",  
W y  C l  Wb = 0 Vu # b. Defining S" = C f l  WO, one has 
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assuming that the weight space is sufficiently homogeneous for all domains to have the 
same volume. nb denotes the number 'of weight-space domains that contain a point in the 
solution set S so that IS''I # 0; ( ).J represents an average over this subset of domains. In 
the thermodynamic limit N -+ w, because for a < 1 the aN conditions AF = U section 
WN into 2" regions no more than one of which can satisfy AW 2 K Vp. it is expected 
that In V - N and that this quantity be self-averaging in the patterns, Cg, i.e. it should 
depend only on the stochastic properties of these variables. It is thus reasonable to assume 
that a, should be associated with a severe contraction of V and a loss of self-averaging. It 
is in such terms that a, is usually defined analytically. In view of the relation of In V to 
microcanonical statistical thermodynamics, we will refer to In V as the 'entropy' of solutions 
to the perceptron problem within W .  

The separation of V into factors, -as in (3.1), allows the criticality conditions of the 
spherical and binary models to be vikwed together. For the former, the weight space is 
connected, so n: = 1 and IW1 I/lWl = 1 and saturation is signalled by a divergence of 
N-l  ln(lS'I/IW'I] + -w. In the binary nework, IW'I/lWl = 2-N and lS''l/lWu'l = 1, 
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so that N-'  Inn: -+ 0 marks the onset of saturation. (With such definitions of criticality, 
it is entirely natural that additional pathologies (such as replica symmetry breaking) should 
be exhibited for 01 a,.) It is probable that for networks intermediate between these two 
limits, a less trivial interplay of the factors of In V will determine the limit of existence of 
solutions. 

However, as indicated in the previous section, if (E- 1) = O(No) then WN is connected, 
so it is to be expected that, in terms of In V, such a system will show more similarity with 
the spherical model than the binary. It would therefore appear likely that it is in the region 
( E  - 1) - N-'  that cross-over from one extreme to the other occurs. The ensuing analyses 
and simulations offer some support of this hypothesis, and suggest that the disconnectedness 
of the binary perceptron's weight space is fundamentally significant to its intractability, far 
more so than even a strong preference for I Jil N 1. 

4. Analysis of the storage capacity 

Using Elizabeth Gardner's, now standard, techniques of replica mean-field theory, one may 
determine the critical storage capacity, ole, for the weight space Wn, as N -+ bo by 
calculating (In V ) c .  The calculation p d l e l s  the original work of Gardner (1988) very 
closely, so only brief comments on the analysis are appropriate. Restricting attention to 
(E - 1) = O(No), given that saturation will be signalled by a divergence of In V one 
may ignore all non-divergent contributions to the entropy. This allows determination of the 
singular parts of In V and of the distribution of synaptic weights, p ( J ) ,  to be combined, 
and eventually invites simplifying asymptotic analysis. Following Gardner, one may write 

where the indices j and a represent an arbitrary choice of synapse and replica By use 
of Fourier decompositions of unity, p ( J )  is reduced to a field theory in replica-dependent 
order parameters, to which the method of steepest descent may be applied, a procedure 
that becomes exact as N + bo. Assuming a replica-symmetric saddle-point, p ( J )  may be 
given in terms of an extremization problem, as follows: 

in which E and 8 are chosen, along with q. so as to extremize the function 

in the limit n + 0, where 

(4.2) 

(4.3) 
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The entropy of solutions is then determined by G,,, to within additive constants 
independent of a. The order parameter q = E, (Jt)i  reflects the broadness of dispersal 
of solutions throughout W N ,  with q + I indicating that solutions to (1 .1 )  lie i n  a single 
small domain. 

The discussion of the previous section suggests that if the weight space is connected. 
criticality is signalled by In V + -m. In view of the trend of the spherical model, and in the 
absence of any obvious alternative means of obtaining a singularity in GeKn(a),  we assume 
that q --t I .  It is worth emphasising that such an assumption for the binary perceptron 
is known to give an erroneously high storage capacity of Q(K = 0) = 4/n (Gardner 
and Derrida 1988, Krauth and Mtzard' 1989), and saturation occurs for a = 0.833, where 
q 5 0.56. 

By analogy with the work of Caidner, we assume that the limit I - q = 6 --t 0 is 
accompanied by divergences of the remaining order parameters, $ and E ,  and make the 
following ansatze: 
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lj  - @I62 (6 + 2 E )  - V I S  =+ E - -$L/sz. (4.5) 

The saddle-point conditions appropriate to extremizing G then become 

(4.7) 

(4.8) 

(The standard shorthand Dx = exp(-$x2)dx/& has been employed.) (4.8) may 
then be solved for the ratio p / u 2 ,  with (4.7) being used to find p ,  and hence ol, from 
(4.6). Comparison of (4.6) with the GZrdner formula for the spherical model (specifically. 
1 = c u , ~ - ~  Dx ( K  + x)') shows that the ratio p = (a,(B)/a,(B -+ co)) is independent 
of K ,  hence for a given pattern stability the storage capacity of the perceptron is reduced 
by solely a geometrical factor. The storage capacity is shown explicitly in figure 2 as a 
function of the bound B and for K = 0. It is seen that for B Y 2, aC is already very close 
to its unrestricted asymptote a, = 2 (where p = v = I ) ,  but that as B 4 I ,  ac > 0.833; 
this disagreement with the binary-model limit indicates that the limits B + 1 and N + m 
do not commute. Moreover, in this limit 

which implies that 

(4.9) 

(4.10) 

so that CI,(K = 0) --t 4/n as B + 1 (cf Gardner and Derrida 1988). The possibility that this 
superficial inconsistency is the result of a failure of the replica-symmetric ansafz is made 
less attractive by the evident connectedness of the solution space when the maxised stability 
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I , , , , , , , , ,  Figure 2. The storage capacity limit rrc versus the 
1.5 2 2.5 synaptic bound B for Y = 0. 1 

B 

K is positive. (We note in passing that there is no unambiguous relationship between a 
disconnected solution space and replica symmetry breaking (O'Kane and Monasson 1993).) 

Evaluation of p ( J )  itself gives the following form of saturation: 

where H ( x )  = i," Dy. This should be compared and contrasted with the form appropriate 
for the spherical model, which has 

(4.12) 

(as derived by Bouten et al 1990). It is appealing that the restricted freedom of the synaptic 
weights should result in compression of the extremities of the distribution into &functions 
at J = kB, and that a Gaussian profile should remain between these limits. However, 
although the expression (4.12) is valid for any loading within saturation, (4.1 I )  applies only 
at saturation. A smoother distribution emerges as CY is reduced, owing to the simplification 
of the perceptron problem, and also the associated reduction in importance of the restriction 

In the limit B -t 1, p ( J )  becomes almost flat between J = fB, with p ( J  = 0) '5 

$ ( B  - I ) ,  indicating only a slow decay of this amplitude. Therefore, although synaptic 
weights J = f l  become strongly favoured, near saturation the network makes use of the 
remaining freedom in W ,  and will contain synaptic weights that span the entire interval 
( - B ,  B). This feature would seem essential to exceeding the capacity of the true binary 
model, namely ac = 0.833. (Illustrative curves of p ( J )  are given in figure 3.) 

The distribution of pattern stabilities may also be calculated by similar methods, 
following Kepler and Abbott (1988). and on saturation has the simple form 

IJiI < B.  

(4.13) 

familiar from the spherical model. 
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Flgurr 3. The dis!ibution of synaptic 
weighls for various bounds 8.  

5. Conversion to binary synapses 

Although the properties of the weight space itself and the form of the maximum storage 
ratio, a&), both show that the skeletal model remains significantly different from the me 
binary perceptron (while ( E  - 1) = O(No)). the similarity suggested by p ( J )  to a binary 
weight space is almost overwhelming. It is therefore worthwhile seeking comparisons 
between the present system and the binary perceptron other than the storage capacity or 
weight-space geometly. There are perhaps two characteristics that seem particularly natural 
to explore. Firstly there would be properties of a binary perceptron formed by taking a 
trained skeletal model and clipping its synapses (thereby replacing Ji by sgn(J,)) in terms 
of the resulting stabilities of the patterns, t p .  Alternatively one might seek to compare the 
choice of synaptic weights of a skeletal model and a binary model when both systems are 
trained independently on the same questions. 

The distribution of pattern stabilities of the clipped skeletal model may be calculated 
closely following Penney and Shemngton (1993a). starting from 

On saturation, this distribution may be reduced to the form 

Pclp(A) = 
exp (-;AZ) 
6 (e) d F w  

4- 
exp(-i(fK - 

U 6  

in which 

(5.3) 

(5.4) 

(5.5) 
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Curves illustrative of this pclp(A) are given in figure 4. The distribution. (5.2), can simply 
be shown to reduce, in the limit B -+ m, to the analogous expression for the spherical 
model (Penney and Sherrington 1993a). However, taking the limit B -+ 1 and using the 
asymptotic characters of /L and v .  we find 

- -  s 
d 

0.5 

0 

which is seen to be of precisely the same form as the distribution of stabilities of the 
underlying skeletal model (4.13). Despite this, beneath the superficial equivalence of pclp(A) 
and p ( A ) ,  there remains an important distinction. Whilst, asymptotically, both distributions 
contain step functions (@(A - K)), because this constituent of pclp(A) involves a limit 
of an error function rather than being a true Heaviside function, the fraction of unstable 
patterns (fwpclp(A)dA) is always of order N o .  Therefore, although p ( A )  of (4.13) 
represents a situation in which all patterns have stabilities exceeding K (for a typical set of 
questions and answers), pclp(A) implicitly has an extensive number of questions which are 
wrongly answered, provided ( B  - 1) = O(No) ,  even though this fraction becomes arbitrarily 
small as B -+ 1. (The decay of ~ ~ , p c l p ( A ) d A  is fairly rapid, being proportional to 
exp(-iK2/(B - l)).) The work of Krauth and Mtzard (1989) centres on binary perceptron 
which srrictly stabilises the patterns e", and as a result of greater difficulties involved in 
this problem, has a lower storage capacity for a given K. 

- B=102 1 -  
B = I . l  . 
B=1.5  . 

: 1 
- ; \  - 

, . I  
I ,  , 

_' J Figure 4. Aligning field distributions of the binary 
perceptron derived from the skeletal model by 

- 2  0 2 

I " " 1 ' 1 '  " " ~ I 

It would seem from p,lP(A) that the binary perceptron formed by weight clipping a 
skeletal model with B - 1, falls only slightly short of solving the perceptron problem 
accessible to its parent network. The distribution of synaptic efficiencies of this parent 
are also very nearly binary valued; moreover this network avoids the ambiguity of the 
true (thermodynamic) binary perceptron (where q p 1 on saturation). Hence, it might 
be expected that in the limit B -+ I the skeletal model is that unambiguously defined 
network whose synapses are most similar to those of the multiplicity of solutions to a given 
perceptron problem for ( J ; )  having binary values. 

An analytic means of comparing the synapses of spherical-synapse and binary-synapse 
solutions to a given perceptron problem was introduced by Penney and Sherrington (1993b), 
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Figure 5. The fraction of synapses in the binary 
percepton f hat are correctly predicted by clipping 
those of B skeletal model, as a function of the bound 
8. 

in analogy with the work of Wong er al (1992). The procedure yields the fraction of binary- 
valued synapses that are correctly predicted by clipping the synapses of the continuous 
network, as compared with the true binary solution for the given pattern set and hence 
the same loading, a. The generalization of the methods from the spherical model to the 
skeletal model is straightforward, so only the resulting algebraic conditions will be given. 
The fraction of correctly predicted synapses is given by f = $(1  + p) ,  where 

and s is determined self-consistently with i according to 

and 

In (5.9), K~ and K~ refer to the, generally distinct, maximum stabilities achievable for 
the given pattern set by the binary and skeletal networks respectively. Solution of these 
equations for various loadings leads to the curves depicted in  figure 5. It is seen that as 
B proceeds towards unity, the fraction of synapses in  the true binary perceptron that are 
correctly predicted by clipping those of the skeletal model, is not monotonically increasing. 
This would suggest that although the binaiy perceptron and the skeletal model with B - I 
show many superficial similarities, they are rather less similar in their internal structure. 
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Given that the maximum synaptic similarity between the skeletal and binary perceptron 
occurs at finite ( B  - 1) (presuming this quantity to be O(No)) ,  we focus in figure 6 on the 
maximum value of f and the associated synaptic bound B ,  as an assessment of the utility 
of the former model in providing a starting point towards the construction of the optimal 
binary perceptron. Here fmar is compared with the corresponding fraction achieved by the 
spherical model, and also with the upper bound derived by taking i + fi in (5.7). 
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6. Numerical simulations 

Direct evidence in support of the theoretical analyses above clearly depends on being able 
to realize a network within the confines of WN(B).  In the absence of the local constraint 
Ji < E ,  a global spherical constraint could be ignored during an iterative training procedure, 
whereafter the perceptron vector could simply be normalized. Alternatively, a network with 
discrete synapses can be subjected to exact enumeration methods (Krauth and Opper 1989) 
or other techniques better suited to discrete rather than continuous optimization (e.g. Kohler 
1990). Between these two extremes the geometry of the weight space is more awkward. 
Although a more methodical and efficient means of training the present model would be 
desirable (perhaps using methods of constrained optimization (e.g. Fletcher 1987)), we have 
employed as a first step a form of simulated annealing (Kirkpatrick era[ 1983) in order to 
try to validate the theoretical assertions. It is known from the work of Horner (1992) that 
simulated annealing is largely unsuccessful when applied to the binary perceptron problem 
for N z 50, but the apparent simplicity of the solution space, S, for the skeletal model, in 
contrast to the binary network, suggests that the annealing method is less likely to suffer 
impenetrable ergodicity breaking. ~ ~ 

In essence, the method of simulated annealing proceeds by constructing a fictitious 
stochastic dynamics for the annealed variables, dependent on a temperature Tan, and an 
energy function on the space of the dynamical variables. Together these control the extent 
to which undesirable system configurations are suppressed: for large T,, the dynamics 
allows wide exploration of the configuration space even if the energy landscape is rough, 
but as the annealing temperature is gradually reduced, the dynamics increasingly gravitates 
around low-energy areas. The choice o f  dynamics is central to any practical application 
of the method; the reconfigurations considered at each step of the algorithm should be 
sufficiently similar to recent states so as to capitalize on the successes achieved thus far and 
also be readily generated, yet should differ enough to allow broad exploration of the range 
of accessible configurations. In training the skeletal model for a specified set of patterns 
[tf; Er], the objective function to be minimized is taken as minus the lower bound on 
pattern stability --K, and a dynamics that always maintains J within WN is used. It would, 
of course, be possible to consider the constraints implicit in WN as soft, but only at the 
expense of specifying their strength relative to the importance of increasing K .  

For the binary-synapse network, the simplest dynamics would be a single-site process, 
whereby individual synapses are addressed and flipped according to a stochastic rule 
dependent on the annealing temperature. The constraints of W N ( B )  do not allow single 
synapses to be considered in such a fashion, but the interests of simplicity would seem 
to favour an algorithm which focuses primarily on individual synapses rather than larger 
groups of couplings. One scheme would be to stochastically modify a particular synapse 
J, --f JA, and thereafter simply scale all other weights equally so as to maintain x i  J: = N .  
This is essentially the approach that has been adopted. Due account must be taken of the 
constraints IJ, I 6 B ,  which frustrate this process in  a number of ways. Not only must Jh 
respect this bound, but the rescaling of the other synapses required by the proposed move 
J,,, + JL must not violate these conditions either, thereby imposing a lower limit on IJAI 
determined by the largest weight amongst the other synapses. Further, if no separation 
is made between synapses having IJiI = B and those with IJil < B ,  the dynamics can 
quickly become jammed as a significant number of couplings become saturated. Therefore, 
a separation between saturated and non-saturated couplings is made, with only those weights 
with IJ, I c B being scaled following the change in the designated synapse. In this manner, 
relatively concise limits on the adjustment Jm + Jh are defined, and a move J + J' can 
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be effected. This proposed change is then accepted or rejected according to the Metropolis 
algorithm (Metropolis et al 1953), with - K  playing the role of the Hamiltonian. After 
considering such moves a number of times for each synapse in turn, corresponding to thermal 
equilibriation at the given annealing temperature, this temperature is reduced slightly and 
the cycle repeated. Every reconfiguration accepted is examined for its optimality, and after 
the temperature has been sufficiently reduced, the best configuration yet found is taken to 
represent the optimal solution to the perceptron problem withii W .  (Given that as the m e  
optimum solution is localized, the distance separating the current weight configmtion and 
this optimum will decrease, it seems advantageous to reduce the step size of the tentative 
move J,,, + JA with the annealing temperature. This is effected by updating Jm using a 
Gaussian random variable with standard deviation equal to the annealing temperature. The 
energy cost of this reconfiguration is scaled so as to be of order N o  and Tz.) 

There are a number of aspects of the theory that we have tried to confirm. There is the 
assertion that, for a given stability K ,  the maximum storage ratio is reduced relative to the 
Gardner limit, by a factor dependent only on B .  Furthermore, there is the dependence of 
this ratio on B itself. Simulation can be used to provide measurements of K for a given 
a, thereby determining K&). which may be used to determine an experimental value of 
p from (4.6). Although for N -+ 03 such a quantity is expected to be independent of 
the precise choice of the pattern elements, for modest system sizes self-averaging is not 
strong. so that a comparison with the theory is effected only after averaging the results over 
various choices of pattems. In all cases N = 50, and averages are taken over 100 choices 
of patterns having Gaussian-distributed elements. The standard deviations of the calculated 
quantities over the choice of patterns are used to produce error-bars for the depicted mean 
quantities, making no allowance for any systematic failings of the training algorithm, which 
would be difficult to quantify. The experimental data are presented in figure 7. 

It is seen that there is a plausible agreement of the trend of p ( B )  with that predicted 
by theory, particularly for larger values of the bound B .  Towards B = 1 and 01 = a,, the 
increasing complexity of the learning problem and the heightened importance of finite-size 
effects, owing to the approach towards a dissected weight space, mean that convincing 
validation of the theory becomes grossly expensive in terms of computer time. However, 
the extrapolation of the trend of the simulation results towards B = 1 is perhaps more 
suggestive of Z/K - 0.64, appropriate for the theory with ( E  - 1) = O(No) rather than 
a value near 0.5, as for the true binary perceptron. As regards the constancy of @(a), 
simulations offer some support of this conjecture, but indicate that, at least for the method 
of training employed, significant fluctuations away from the theoretical value are to be 
expected for small systems. However, given the apparent lack of systematic disagreement 
between theory and experiment except towards a = a,, the relevance of such practical 
considerations would seem apparent. 

The observation that the fractional volume of the spherical space that lies within the 
skeletal weight space W N ,  namely F ,  is exponentially small in N does not preclude the 
possibility that WN will actually contain the optimal spherical perceptron vector for a given 
set of patterns. For finite-size systems, this is likely to lead to significant fluctuations of the 
experimental value of K ,  and hence p, associated with such purely statistical effects. As 
system size N increases, these deviations are expected to decrease, and in the thermodynamic 
limit should be quashed entirely. 

Regarding the analytic comparison of the skeletal model with the true binary perceptron, 
in view of the unexpected non-monotonicity in B of the fraction of binary synapses 
predictable by weight clipping f, numerical evaluation of this overlap was considered 
desirable. However, this task necessarily requires that both species of optimal network can 
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Figure 7. Results of numerical evaluation of fi, using simulated annealing. The lop graph 
shows p ( B )  (at a = 0.5). along with lhe theoretical pmdiction. The bottom graph is of fi(ct) 
for B = 1.2. 1.3, 1.5 (from below), which theory predicts lo be independent of a as N + 00. 

be constructed before their synaptic weights can be compared, and for system sizes such that 
finite-size effects can bz considered small. The most reliable method of seeking the optimal 
binary perceptron is laborious enumeration of all 2' states of the N synapses in search of 
that configuration that maximises K for the imposed loading, 01. For system sizes where 
this is feasible, typically N < 20, the skeletal model near B = 1 (where the peculiarities 
o f f  are most prevalent) is prone to resemble the binary perceptron itself simply due to 
finite-size effects or other largely practical difficulties. It is therefore desirable to be able to 
train both systems for rather larger numbers of neurons. 

Given the attractions of genetic algorithms in optimizing the binary perceptron owing 
to the dispersion of good networks over the corners of their hypercubic weight space, we 
have employed such a scheme based on Kohler's algorithm (1990), which is itself seen 
to give performance in close agreement with the theory of Krauth and Mezard (1989) at 
least up to N - 50, where training by exact enumeration would be totally impractical. We 
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Figure 8. The Lop graph shows simulation results for the fraction of weights in the binary 
perceptron correctly predicted by clipping those of the skeletal model f for a = 0.8 and 
N = 50. In the lower graph the performance of the genetic algorithm used to train the binary 
model is indicated by comparing the resulting stability-capacify data points with the lheory of 
Krauth and Mezard. 

have thus compared the synapses of the skeletal model with those of a near-optimal binary 
perceptron when both networks store identical patterns, obtaining results shown in figure 8. 
(As an indication of the fidelity of the genetic algorithm, the stability K it achieves for a 
given storage ratio 01 is also depicted.) A definite non-monotonic trend is observed, and 
one that shows fair agreement with the theoretical predictions, although fluctuations appear 
to be still more important than in the measurements of I.L. 

7. Conclusions 

A perceptron model intermediate between the spherical model, in which the synaptic weights 
are limited only by a normalization constraint, and a binary-synapse system has been 
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introduced. Investigation of this system functioning as a heteroassociative memory has 
suggested that the disconnectedness of the binary model’s weight space is central to the 
differences between this and the canonical spherical model, with a mere preference for 
synaptic weights near J = & I  being very much a secondary consideration. It has been 
indicated that the skeletal model may closely resemble the analogous binary perceptron even 
while its weight space remains continuous and connected, but that this exterior similarity 
belies rather different internal configurations of their synapses. It would therefore appear that 
whilst the skeletal model may be useful in realizing a functional binary-synapse network, 
it does not greatly assist the search for the true maximally stable binary perceptron as 
compared with what can be accomplished using the spherical model. A simple form of 
simulated annealing has been shown to achieve some success with the task of training the 
skeletal model. 

The results of these investigations would suggest that binary networks derived by 
training entirely within a continuous weight space (cf P6rez Vicente ef ai 1992) may differ 
in their properties from those constructed by optimizing in a discrete space, perhaps after 
pre-training in a continuous space (cf Penney and Sherrington 1993b). Despite this, these 
differences are l ie ly  to be strongly dependent on the practicalities of the training procedures 
employed, and are therefore not readily closely specified a priori. 

That a viable binary perceptron may be constructed by clipping the synapses of a skeletal 
model with B n. 1 (as suggested by the forms of p ( J )  (4.11) and &(A) (5.2)) might 
encourage the development of more efficient algorithms for training the skeletal model than 
the simplistic scheme used in this work, as it is possible that in some applications of binary- 
synapse networks, the imperfections of the clipped skeletal model would be excusable. 
When this is not the case, it would seem that this model is most readily cannibalised into 
the binary perceptron when ( B  - I )  is finite. In view of the the investigations of Penney 
and Shenington (1993b). it would s&m likely that any adjustment to the clipped model 
needed to improve its performance can be reliably targeted using information provided by 
the continuous-synapse parent, in the form of the magnitudes of its synaptic weights. Even 
if exact enumeration of all states of afraction synapses in a binary network was required, 
by pre-training with a skeletal model a large fraction of these weights could be predicted 
with comparative certainty. Thus the combination of pre-training using a skeletal model and 
either exact enumeration or some form of genetic optimization, might allow rather larger 
binary networks to be well trained than could be achieved by other means, with a great 
reduction of the learning task having been achieved by optimization in a continuous space. 
However, whether the skeletal model is to be preferred to the spherical model as a starting 
point of such an enumeration is crucially dependent on the efficiency with which the skeletal 
model may be trained, and on the system size. 

R U’ Penney and D Sherringion 
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